分析化学の翻訳サンプル

分析化学の論文における日英翻訳サンプルです。翻訳ユレイタスでは、分析化学論文の用途に応じ3つの翻訳レベルをご用意しています。その違いは、各レベル別の訳文と、右側のチェックリストにてご確認ください。学術論文の翻訳において平均10年以上の経験を持ち、分析化学に造詣の深いユレイタスの博士号翻訳者が、インパクトファクターの高い論文誌への掲載をお手伝いします。

オリジナル原稿

PT/モルデナイトゼオライト触媒のSEM像を図2に示し、これは触媒の形態が均一であることを示す。表面積は触媒活性において重要な役割を果たす。表面積が大きいと反応物の吸着が改善される。触媒の表面積はBET表面分析によって測定さた。PT/モルデナイトゼオライトの表面積は296.69 m2/gであった。PT/モルデナイトゼオライトのXRDパターン(図3)は、2θ = 6°~30°で最も強い回折ピークを示し、ゼオライトのMOR構造とその良好な結晶性が確認される。
ペンタン異性体の二元混合物中の純粋なn-ペンタンとn-ペンタンの水素異性化を、Pt/モルデナイト触媒によって幅広い実験条件下で行った。水素転化生成物は、転化生成物およびクラッキング生成物の両方を含む。以下のサブセクションでは、反応パラメータが供給材としての純粋なnペンタンの触媒性能にどのように影響するかを説明するが、これは触媒活性および異性化選択性によって示される。次に、二元混合物中のN-ペンタンの異性化について議論する。
図4は、反応温度の関数としてのN-ペンタンの転化を示す。この反応は、大気圧で150°Cから350°Cの温度範囲でH2環境で行われた。この触媒は、特に220℃〜350℃の温度範囲において、N-ペンテンの異性化に強く触媒作用すると見られる。この触媒の活性は低く、またn-ペンタンの反応性が低いため、nペンタンの転化は180℃以下の温度では無視できる。180℃から220℃に温度を上げることにより、nペンタンの転化は大きく増加したが、さらに温度を上げると転化が遅くなった。これは、温度を180°C~220 °Cの範囲に上げると、反応のために活性化できる部位の数が増加することによって引き起こされる可能性があるが、高温では熱力学的制限のために温度が上昇すると転化速度は低下し始める。つまり、温度を上げると、反応速度は常に高くなる。低温では、反応速度が低いため、実際の転化は平衡転化率をはるかに下回る。対照的に、高温では、高い反応速度のために容易に平衡転化率になる。

 

翻訳原稿

下のタブをクリックすると、レベル別サンプルが表示されます。

    An SEM image of the Pt/mordenite zeolite catalyst is shown in Figure 2 and indicates that the catalyst has a homogeneous morphology. The surface area plays a key role in the catalytic activity. High surface area improves the adsorption of reactants. The surface area of the catalyst was measured by BET surface analysis. The surface area of Pt/mordenite zeolites were 296.69 m2/gm. The XRD pattern of Pt/mordenite zeolite (Figure 3) exhibits the most intense diffraction peaks at 2θ = 6 - 30o the MOR structure of zeolite and its good crystalline nature are thus confirmed.
    The hydroisomerization of pure n-pentane and n-pentane in a binary mixture of pentane isomers was performed by the Pt/mordenite catalyst under a wide range of experimental conditions. The hydro-conversion products comprise of both isomerization and cracking products. The following subsections cover how the reaction parameters affect the catalytic performance of pure n-pentane as the feed, which is demonstrated by catalytic activity and isomerization selectivity. Then, the isomerization of n-pentane in the binary mixture is discussed in the last part of this section.
    Figure 4 shows the conversion of npentane as a function of reaction temperature. The reactions were performed in an H2 environment at temperatures ranging from 150 - 350 °C at atmosphere pressures. It clearly shows that the catalyst showed a high catalysing activity for the isomerization of npentane, particularly in the temperature range of 220-350 ° C. Because of the low activity of the catalyst and the low reactivity of n-pentane, the conversion of n-pentane is negligible from temperatures below 180 °C. By increasing the temperature at 180 to 220 °C, the conversion of n-pentane increased greatly; however, increasing the temperature further results in a slow conversion. This can be caused by increasing the number of sites which can be activated for the reaction when the temperatures increases in the range from 180 - 220 °C; but, the rate of conversion decreases because of thermodynamic restriction at bigger temperature. In other words, increasing the temperature always results in a higher reaction rate. Thus at low temperatures, the actual conversion will be far below the equilibrium conversion because of low reaction rate. On the contrary at higher temperatures the equilibrium conversion will be more easy due to a high reaction rate.

    修正ポイント

    このページでは、クロスチェッカーやネイティブチェッカー(校正者)が加えた修正変更を分かりやすいように色付きで紹介していますが、通常お客様には、修正変更履歴を残さず、最終版のみを納品しております。

    Figure 2shows anAn SEM image of the Pt/mordenitezeolite catalyst. The image  is shown in Figure 2 and indicatesthat thecatalyst has a homogeneous morphology. The surface area isplays akey rolein the catalystcatalyticactivity. HigherHigh surface areaimproves the reactant adsorption. ofreactants. The catalysts surface area of thecatalyst was measured by BET. surface analysis.1 The surface area of Pt/mordneite2mordenitezeolites were 296.69 m2/gm. The XRDsXRDpattern of Pt/mordenite zeolite (Figure 3) exhibits the most intensediffraction peaks at 2θ = 6 - 30o, and it thusconfirmed 30othe MOR structure ofzeolite asthe MOR as well asand its good crystallinenature beinggood. are thus confirmed.3

    The hydroisomerizationof pure n-pentane and n-pentane in a binary mixture of pentane isomers wasperformed by the Pt/mordenite catalyst forunder awide rangesrangeof experimental conditions. The hydrological hydro-4conversionproducts comprise of both isomerization and cracking products. Hence theThefollowing subsections discuss cover how the reactionparameters effects withaffect thecatalytic performance of pure n-pentane as the feed are, which isdemonstrated by catalytic activity and isomerization selectivity.5 After thisThen,the isomerization of n-pentane in the bibinarymixture is discussed in the last part of this section6.

    Figure 4 showsthe conversion of npentane as a function of reaction temperature. The testsreactions7were performed in an H2 environment at temperatures ranging from 150- 350 °C at atmosphere pressures. It clearly shows that the catalyst showed ahigh catalysing activity for the isomerization of npentane,particularly in the temperature ranging inrange of 220-350° C. Because of the low activity of the catalyst and the low reactivity ofn-pentane, the conversion of n-pentane is negligible from temperatures below180 °C. By increasing the temperature at 180 to 220 °C, the conversion ofn-pentane roseincreased greatly;however, a further increase in increasingthe temperature slowly risesfurther results in a slow8conversion. This can be caused by an increasing the number of siteswhich can be activated for the reaction when the temperatures increases in therange from 180 - 220 °C; but, the rate of conversion decreases because ofthermodynamic restriction at bigger temperature. In other words, an increasingthe temperaturealways meansincreasingresults in a higher reaction rate.Thus at low temperatures, the actual conversion will be farbelow the equilibrium conversion because of low reaction rate. On the contraryat higher temperatures the equilibrium conversion will be more easy due to a highreaction rate.

    1. [専門的な単語の選択][SME]より専門的に正確な言葉の選択
    2. [スペルエラー]スペルミスを修正
    3. [読みやすさ]フレーズと読みやすさを改善
    4. [誤訳]専門用語の誤訳を修正
    5. [明確さ]ワードチョイスや言葉の問題を改善することで、明確さとフローを改善しました。
    6. [訳抜け]“Last part”の抜け
    7. [専門的な単語の選択]より適切で正確な専門用語を選択
    8. [明確さ]言い回しや言葉の選択を工夫し、明確さを向上

    A scanning electron microscopy image of the Pt/mordenite zeolite catalyst is shown in Figure 2 which indicates that the catalyst morphology is homogeneous .High surface area improves the reactant adsorption, thus playing a key role in the catalytic activity . The surface area of the Pt/mordenite zeolite catalyst measured by Brunauer–Emmett–Teller surface analysis.was 296.69 m2/g. The X-ray powder diffraction pattern of Pt/mordenite zeolite (Figure 3) exhibits the most intense diffraction peaks at 2θ = 6°–30°, thus confirming the MOR structure of zeolite as well as its good crystalline nature .
    Pure n-pentane and n-pentane in a binary mixture of pentane isomers was hydroisomerized using the Pt/mordenite catalyst under a wide range of experimental conditions. The hydro-conversion process yielded both isomerization and cracking products. In the following subsections, the effects of reaction parameters on the catalytic performance of pure n-pentane as the feed are demonstrated based on catalytic activity and isomerization selectivity. Then, the isomerization of n-pentane in the binary mixture is discussed in the last part of this section.
    Figure 4 shows the conversion of n-pentane as a function of reaction temperature. The reactions were performed in an H2 environment at temperatures ranging from 150 °C to 350 °C at at atmospheric pressure. The catalyst is seen to strongly catalyze the isomerization of n-pentane, particularly in the temperature range of 220 °C–350 °C. Because of the low activity of the catalyst and the low reactivity of n-pentane, the conversion of n-pentane is negligible at temperatures below 180 °C. By increasing the temperature from 180 °C to 220 °C, the conversion of n-pentane increased significantly; however, increasing the temperature further results in a slow conversion. This can be attributed to an increase in the number of sites that can be activated for the reaction when the temperatures increases in the range from 180 - 220 °C; however, the r conversion rate begins to decrease as the temperature increases because of thermodynamic restrictions at higher temperatures. In other words, increasing the temperature results in a faster reaction rate. At low temperatures, the low reaction rates cause the actual conversion to be far below the equilibrium conversion rate. In contrast at higher temperatures the equilibrium conversion is easily achieved due to the high reaction rate.

    修正ポイント

    Figure 2shows anAn SEMA scanning electron microscopy1 image of thePt/mordenite zeolite catalyst. The image  is shown in Figure 2and which indicatesthat thecatalyst has a homogeneous morphology. The surface area plays a key role in the catalyticactivity.  is homogeneousHigher.Highsurface area improves the reactant adsorption, of reactants. thus playing a key role in the catalytic activity2. The catalysts surfacearea ofthe Pt/mordenitezeolite3 catalyst was4 measured by BET.Brunauer–Emmett–Teller surface analysis5. Thesurface area of Pt/mordneitemordenite zeoliteswerewas 296.69 m2/gm6.The XRDX-raypowder diffraction pattern of Pt/mordenite zeolite (Figure 3)exhibits the most intense diffraction peaks at 2θ = 6 - 30o,and it thus confirmed 6°–30o7, thus confirming the MOR structure ofzeolite asthe MOR as well as and its good crystallinenature beinggood. are thus confirmed.8

    Thehydroisomerization of pure Pure n-pentane andn-pentane in a binary mixture of pentane isomers was performed byhydroisomerized usingthe Pt/mordenite catalyst forunder a wide rangesrangeof experimental conditions. The hydrological hydro-conversion9 products comprise ofprocessyielded both isomerization and cracking products. Hence theThe In the followingsubsections, discuss cover howthe effects of reaction parameters effects with10affect on thecatalytic performance of pure n-pentane as the feed are which is demonstratedbybased oncatalytic activity and isomerization selectivity. 11After thisThen,the isomerization of n-pentane in the bibinarymixture is discussed in the last part of this section.12

    Figure 4 showsthe conversion of npentane n-pentane13 as a function ofreaction temperature. The testsreactions14 wereperformed in an H2 environment at temperatures ranging from 150 °C to 350 °C at atmospherepressures. It clearly shows that theatmospheric pressure. The catalyst showeda high catalysing activity for the isseen to strongly catalyze the isomerization of npentanen-pentane, particularlyin the temperature ranging inrange of 220 °C-350 °C. Because of the low activity of thecatalyst and the low reactivity of n-pentane, the conversion of n-pentane isnegligible from at temperatures below 180 °C. By increasing thetemperature at from180 °C to 220 °C, theconversion of n-pentane roseincreased greatlysignificantly;however, a further increase in increasingthe temperature slowly risesfurther results in a slowconversion.15 This can be caused by anincreasingattributed to an increase inthe number of sites which that can be activated for the reaction when thetemperatures increases in the range from 180 °C- 220 °C; buthowever,the rate ofconversion decreases ratebegins to decrease as the temperature increases because ofthermodynamic restrictions at bigger higher temperatures. In other words, an increasing the temperaturealways means increasingresults in ahigherfaster reaction rate. ThusatAt low temperatures,the low reaction rates cause the actualconversion will to be far below the equilibrium conversion because of low reaction rate. On the contraryIncontrast at higher temperatures theequilibrium conversion will be more easyis easily achieved due to a the highreaction rate.

    1. [略語]本文中の略語は、略されていません。
    2. [読みやすさ]フレーズと一貫性が改善されました。
    3. [スペルエラー]スペルミスを修正
    4. [主語・動詞の一致][文法]主語と動詞の一致では、surface areaが単数形なので、ここでは単数形の過去形 "was "を使わなければなりません。なお、"were "は複数形であることに注意してください。
    5. [専門的な単語の選択][SME]より専門的に正確な言葉の選択
    6. [単位][SME]BET法による表面積は、通常、単位質量またはバルク体積当たりの面積で指定されます。この場合、"gm "は "g "とすることを提案します。
    7. [句読点]範囲を示すには、ハイフンではなく、エンダッシュを使用します。
    8. [読みやすさ]フレーズと読みやすさを改善
    9. [誤訳]専門用語の誤訳を修正
    10. [明確さ]ワードチョイスや言葉の問題を改善することで、明確さとフローを改善しました。
    11. [読みやすさ]フレーズと読みやすさが向上しました
    12. [訳抜け]“Last part”の抜け
    13. [一貫性][スタイル]通常、n-pentaneはハイフンで表記します。また、先ほどハイフンを使用したので、表記や綴りは文書全体で同じにする必要があります。
    14. [専門的な単語の選択]より適切で正確な専門用語を選択
    15. [明確さ]言い回しや言葉の選択を工夫し、明確さを向上

サンプル一覧に戻る次のサンプルを見る

ジャーナル情報ツール

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

論文翻訳・学術翻訳ユレイタスは、翻訳サービスの国際規格ISO17100認証の取得企業です。さらに、情報セキュリティマネジメントシステム(ISO/IEC27001:2013)ならびに品質マネジメントシステム(ISO9001:2015)において、優れた社内体制を整備されている企業に与えられる国際規格ISOを取得しております。お客様の原稿を厳重な管理の下で取り扱い、論文翻訳などあらゆる翻訳の品質を高め、維持する仕組みを備えています。