人工知能の翻訳サンプル

人工知能の論文における日英翻訳サンプルです。翻訳ユレイタスでは、人工知能論文の用途に応じ3つの翻訳レベルをご用意しています。その違いは、各レベル別の訳文と、右側のチェックリストにてご確認ください。学術論文の翻訳において平均10年以上の経験を持ち、人工知能に造詣の深いユレイタスの博士号翻訳者が、インパクトファクターの高い論文誌への掲載をお手伝いします。

オリジナル原稿

年齢推定アルゴリズムは、階層的アプローチを実現します(図10)。まず、入力フラグメントは、18 歳未満、18 ~ 45 歳、45 歳超の 3 つの年齢グループに分けられます。次に、このステップの結果は7つの小さなグループに細分され、それぞれが10年に制限されています。したがって、マルチクラス分類の問題は、バイナリの「すべてに対して1つ」の分類子(BC)のセットに縮小されます。分類子は、関連するクラスに基づいて画像をランク付けし、最終的な決定は、これらのランクヒストグラムを分析することによって得られます。

これらのBCは、2レベルのアプローチを使用して構築されています。先に説明したように、最初にアダプティブフィーチャ空間に移行した後、RBF カーネルを備えたサポートベクトルマシンを使用してイメージを分類します。

入力フラグメントは、輝度特性を揃えて均一なスケールに変換するために、前処理されます。この前処理ステップには、色空間変換と拡大/縮小が含まれます。どちらの操作も、性別認識アルゴリズムで使用される操作と同様です。フィーチャはカラーコンポーネントごとに計算され、結合されて均一なフィーチャベクトルを形成します。

トレーニングとテストには、十分な規模のカラー画像データベースが必要です。私たちは、最先端のMORPHおよびFG-NET画像データベースと独自の画像データベースを組み合わせて、10,500点の顔画像で構成される異なるソースから取得しています。画像内の顔は AdaBoost 顔検出アルゴリズムによって自動的に検出されました。

年齢分類アルゴリズムの第 1 段階のトレーニングとテストには、合計 7000点の画像が使用されました。144 のアダプティブフィーチャを使用して、3 つの BC が作成されました。

第1段階の分類結果は、若年者の顔で 82% の精度、中年者の顔で 58% の精度、高齢者の顔で 92% の精度を示しました。3つの年齢区分における年齢分類の全体精度は 77.3% でした。

第2段階のBCは、第1段階と同様に構築されました(前述)。図11は、提案されたアルゴリズムの第1段階による年齢推定に関する視覚的な例を示しています。

 

翻訳原稿

下のタブをクリックすると、レベル別サンプルが表示されます。

    The age estimation algorithm realises hierarchical approach (fig. 10). First of all input fragments are divided into three age groups: smaller than 18 years old, from 18 - 45 years old and bigger than 45 years old. Afterwards the results of this step are subdivided to seven smaller groups, each limited to one single decade. Thus the problem of multiclass classification is therefore reduced to a set of binary ‘one-against-all’ classifiers (BC). These classifiers calculate: ranks of each of the analyzed class. The total decision is obtained then by the analysis the rank histograms.

    These BCs are constructed using a two-level approach. After first transitioning to adaptive feature space, as described earlier, , and support vector machines classification of images with RBF kernel.

    Input fragments were preprocessed for their luminance characteristics to align and to transform them to uniformal scale. This preprocessing step includes color-space transformation and scaling, both operations similar to those used in the a gender recognition algorithm. Features, calculated for each colour component, are combined to form a uniform feature vector.

    Training and testing require a huge enough coloring image database: We used state-of-the-art image databases MORPH and FG-NET with our own image database, gathered from manysources, which comprised of 10,500 face images. Faces on the images were detected automatically by AdaBoost face detection algorithms.

    A total number of seven thousand images were used for age classification algorithm training and testing on the first stage. 3 binary classifiers were made utilizing 144 adaptive features each.

    Classification results on the first stage are: 82 % accuracy for young age, 58 % accuracy for middle age and 92 % accuracy for senior age. Age classification accuracy in a three age division problem – 77.3 %.

    Binary classifiers of the second stage were constructed equal to the first stage described above. A visual example of age estimation by the proposed algorithm on its first stage is presented in figs. 11.

    修正ポイント

    このページでは、クロスチェッカーやネイティブチェッカー(校正者)が加えた修正変更を分かりやすいように色付きで紹介していますが、通常お客様には、修正変更履歴を残さず、最終版のみを納品しております。

    The age estimation algorithm realises hierarchical approach (fig. 10). First of all input fragments are divided into1for three age groups: smaller than 18 years old, from 18 - 45 years old and bigger than 45 years old. Afterwards the results of this in the first stepage are more subdivided to seven smallernewer groups, with each limiteding to one single decade. Thus the problem of multiclass classification is therefore reduced to a set of binary ‘one-against-all’ classifiers (BC).These classifiers calculate: ranks of each of the analyzed class. The total decision is obtained then by the analysis the previously received rank histograms of ranks.

    These BCs are constructioned using a two-level approach. After is appliedfirst with the 2transitioning to adaptive feature space, asequal to this3 described earlier, and support vector machines classification of images with RBF kernel.

    Input fragments were preprocessed for their luminance characteristics to align and to transform them to uniformal scale. This pPreprocessing step includes color-space transformation and scaling, both operations similar to those used inthat of a gender recognition algorithm. Features, calculated for each colour component, are combined to form a uniform featured4 vector.

    Training and testing5 require a sufficientlyhuge largeenough coloring image database: We used state-of-the-art image databases MORPH and FG-NET with our own image database, gathered from some6many sources, which comprised of 10,500 face images. Faces on the images were detected automatically by AdaBoost face detection algorithms.

    A total number of seven thousand images were used for age classification algorithm training and testing on the first stage. 3 binary classifiers were made utilizing 144 adaptive features each of.

    Classification results on the first stage are: 82 % accuracy for young age, 58 % accuracy for middle age and 92 % accuracy for senior age. Age classification accuracyrate in a three age division problem – 77.3 %.

    Binary classifiers of the second stage were constructed equalsame to the first stage described above. A visual example of age estimation by the proposed algorithm on its first stage is presented in figs. 11.  

    1. [正確さ] 明確さを保つため、前置詞を変更しました。
    2. [明確さ] 明快さと語の使用が改善されました
    3. [読みやすさ] 読みやすくするために直訳を修正しました
    4. [専門用語の選択] [SME] 学界で使われている正しい専門用語です
    5. [訳抜け] “and testing” の訳抜けを確認しました
    6. [誤訳] 誤訳を修正しました。原文に従って、“some”を“many”に変更しました

    The proposed age estimation algorithm realizes hierarchical approach (Fig. 10). First, the input fragments are divided into three age groups: less than 18 years old, 18–45 years old, and more than 45 years old. Second, the results of this first step are further subdivided into seven smaller groups, each limited to a single decade. This reduces the original multiclass classification problem to a set of binary “one-against-all” classifiers (BC). Each classifier then ranks the images based on the associated class, and the final decisions are obtained by analyzing these rank histograms.

    These BCs are constructed using a two-level approach. After first transitioning to an adaptive feature space, as described earlier, the images are classified using support vector machines with radial basis function(RBF) kernels.

    The input fragments are preprocessed to align and transform their luminance characteristics to a uniform scale. This preprocessing step includes color-space transformation and scaling, both operations similar to those used in the gender recognition algorithm. Features are calculated for each color component and combined to form a uniform feature vector.

    Training and testing require a sufficiently large color image database. Here, we combined the state-of-the-art MORPH and FG-NET image databases with our own image database, gathered from many sources and comprising 10,500 face images. The faces in the images were detected automatically by the AdaBoost face detection algorithms.

    A total of 7000 images were used to train and test the first stage of the age classification algorithm. Three BCs were created, each with 144 adaptive features.

    The first-stage classification results showed 82% accuracy for young faces, 58% accuracy for middle-aged faces, and 92% accuracy for elderly faces. The overall age classification accuracy for the three age categories was 77.3%.

    The second-stage BCs were constructed in the same manner as the first stage (described above). Fig. 11 shows a visual example of age estimation by the first stage of the proposed algorithm.

    修正ポイント

    このページでは、クロスチェッカーやネイティブチェッカー(校正者)が加えた修正変更を分かりやすいように色付きで紹介していますが、通常お客様には、修正変更履歴を残さず、最終版のみを納品しております。

    The proposed age estimation algorithm realisesrealizes hierarchical approach (figFig. 10). First of all, the input fragments are divided into1for three age groups: smallerless than 18 years old, from 18 - 45 years old and biggermore than 45 years old. Afterwards2Second, the results of this in the firstfirst stepage are more further subdivided tointo seven smallernewer groups, with each limiteding to onea single decade. ThusThis reduces the problem oforiginal multiclass classification is therefore reduced problem to a set of binary one-against-all3 classifiers (BC). These classifiers calculate:Each classifier then ranks of each of the analyzedthe images based on the associated class. The total decision is, and the final decisions are obtained then by the analysis the previously received analyzing these rank histograms of ranks.       

    These BCs are constructioned4 using a two-level approach. After is appliedfirst with the transitioning to an adaptive feature space, asequal to this5 described earlier, and the images are classified using support vector machines classification of images with radial basis function (RBF) kernels.6

    The Iinput fragments wereare preprocessed forto align and transform their luminance characteristics to align and to transform them to uniformala uniform scale. This pPreprocessing step includes color-space transformation and scaling, both operations similar to those used inthat of athe 7gender recognition algorithm. Features, are calculated for each colourcolor component, are and combined to form a uniform featured8 vector.

    Training and testing9 require a sufficientlyhuge largeenough coloring image database: We used. Here, we combined the state-of-the-art image databases MORPH and FG-NET image databases with our own image database, gathered from some10many sources, which comprised of many sources and comprising 10,500 face images. Faces on. The faces in the images were detected automatically by the AdaBoost face detection algorithms.

    A total number of seven thousand7000 images were used for to train and test the first stage of the age classification algorithm training and testing on the first stage. 3 binary classifiers. Three BCs were made utilizingcreated, each with11 144 adaptive features each of.

    Classification results on the The first-stage are:classification results showed 82 % accuracy for young agefaces, 58 % accuracy for middle age-aged faces, and 92 % accuracy for seniorelderly faces. The overall age. Age classification accuracyrate in afor the three age division problem –categories was 77.3 %.12

    Binary classifiers of tThe second-stage BCs were constructed in the equalsame tomanner as the first stage (described above. A). Fig. 11 shows a visual example of age estimation by the first stage of the proposed algorithm on its first stage is presented in figs. 11..

    1. [正確さ] 明確さを保つため、前置詞を変更しました。
    2. [語の選択] 語の使用を改善しました
    3. [句読点] 引用符を変更しました
    4. [明確さ] 明快さと語の使用が改善されました
    5. [読みやすさ] 読みやすくするために直訳を修正しました
    6. [明確さ] 明確さを保つために言い換えました
    7. [文法] 文法のエラーを修正しました
    8. [専門用語の選択] [SME] 学界で使われている正しい専門用語です
    9. [訳抜け] “and testing” の訳抜けを確認しました
    10. [誤訳] 誤訳を修正しました。原文に従って、“some”を“many”に変更しました
    11. [一貫性] [スタイル] 略語は以前に決定されているので、一貫性を維持するために使用しました
    12. [読みやすさ] 明確さと読みやすさを向上させるために、語を追加し、言い換えました

サンプル一覧に戻る次のサンプルを見る

ジャーナル情報ツール

Content on this page requires a newer version of Adobe Flash Player.

Get Adobe Flash player

論文翻訳・学術翻訳ユレイタスは、翻訳サービスの国際規格ISO17100認証の取得企業です。さらに、情報セキュリティマネジメントシステム(ISO/IEC27001:2013)ならびに品質マネジメントシステム(ISO9001:2015)において、優れた社内体制を整備されている企業に与えられる国際規格ISOを取得しております。お客様の原稿を厳重な管理の下で取り扱い、論文翻訳などあらゆる翻訳の品質を高め、維持する仕組みを備えています。